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Abstract

Interoceptive signals from gut and adipose tissue and sensory cues from the environment are integrated by hubs in the brain to
regulate feeding behavior and maintain homeostatic control of body weight. In vivo neural recordings have revealed that these
signals control the activity of multiple layers of hunger neurons and eating is not only the result of feedback correction to a set
point, but can also be under the influence of anticipatory regulations. A series of recent technical developments have revealed
how peripheral and sensory signals, in particular, from the gut are conveyed to the brain to integrate neural circuits. Here, we
describe the mechanisms involved in gastrointestinal stimulation by nutrients and how these signals act on the hindbrain to gen-
erate motivated behaviors. We also consider the organization of multidirectional intra- and extrahypothalamic circuits and how
this has created a framework for understanding neural control of feeding.
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INTRODUCTION

Gut vagal terminals act as polymodal sensors of gastroin-
testinal (GI) content responding to stimuli, such as stretch-
ing, osmolarity, pH, and nutrients, and connecting with the
brain in order to elicit energy homeostatic responses (1, 2).
Vagal afferent nerve terminals are anatomically distributed
in different layers of the GI tract, as shown in Fig. 1.
Intraganglionic laminar endings (IGLEs) act as mechanore-
ceptors, sensing GI stretching, whereas vagal mucosal end-
ings can sense chemical stimuli. A large heterogeneous
group of nerve terminals also express receptors for enteroen-
docrine hormones and their activation, in part by mechano-
sensing, generates signals that can regulate food intake (3).
These diverse afferent signals are processed by the nodose
ganglia (NG) that contains the cell bodies of �2,300 neurons
(4) comprising the vagal afferent system and conveys the
chemical and mechanical information from the GI tract (and
other organs) to the nucleus of the solitary tract (NTS) and
area postrema (AP) in the hindbrain. NTS neurons integrate
the information and in turn excite other hindbrain regions,
such as the parabrachial nucleus (PBN), which in turn pro-
ject broadly to higher centers in the brain.

Recent studies have also reshaped our understanding
about the roles of hypothalamic neurons, revealing that they
function primary as interoceptive sensors of hormone levels
that reflect the milieu interne that can be further modulated
by sensory cues that modulate their firing (5). The identifica-
tion of these novel intra- and extrahypothalamic populations
has elucidated how the central nervous system adjusts food

consumption and energy expenditure to maintain energy
homeostasis.

In this mini-review, we describe recent advances obtained
from mouse studies in the characterization of GI-brain con-
nections involved in the regulation of appetite and also the
neuronal networks integrating hypothalamic and extrahypo-
thalamic signals.

THE ASCENDING PATHWAY FOR FEEDING
CONTROL

The enteroendocrine cells in the gut are equipped with an
array of nutrient, chemical, and mechanical sensors and
influence food digestion and appetite by releasing a plethora
of hormones (6). A new identified class of epithelial cells in
the colon and small intestine, termed neuropod cells, release
glutamate in response to a sugar stimulus and synapse with
vagal neurons, suggesting a new mechanism by which a
luminal stimulus is rapidly conveyed to the brain (7).

Recent genetic mapping, anatomical tracing, and optoge-
netic activation of different nodes of afferent vagal neurons
have defined their neurochemical phenotypes and effects on
feeding behavior. The role of Gpr65- and Glp1r-expressing
vagal neurons was extensively explored after the identifica-
tion of G protein-coupled receptors (GPCRs) in distinct vagal
afferents. The Gpr65-expressing vagal neurons were found
in mucosal-ending terminals, mainly in duodenal villi, and
Glp1r-expressing afferents were identified in IGLEs in the
stomach muscle. Interestingly, in vivo calcium image
(GCaMP3) in nodose ganglia of the respective Cre-knockin
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mice showed that GPR65 neurons are responsive to nutrients
in the intestinal lumen whereas GLP1R neurons in nodose
respond to gastrointestinal distension but not to GLP1 (8).

A recent study evaluated the putative appetite-suppres-
sant role of afferent vagal neurons. The genetic characteriza-
tion of vagal sensory neurons as revealed by single-cell RNA
sequence (sc-RNAseq) of GI-targeted afferent neurons iden-
tified 12 clusters; eight of them expressing unique markers:
Oxtrþ , Olfr78þ , Npas1aþ , Sstþ , Calcaþ , Vipþ /Utsb2bþ ,
Prom1þ , and Edn3þ . However, considering that the vagus
nerve innervates most organs in the thoracic and abdominal
cavities, it is worth mentioning that none of these unique
genetic markers have been confirmed to exclusively inner-
vate the gut. Following a GI tract-nodose ganglia neuronal
retrograde tracing, the authors identified Vipþ - and
Gpr65þ -expressing neurons in mucosal-endings and Oxtrþ -
and Glp1rþ -expressing neurons in IGLEs. Surprisingly, only
IGLE-targeted neurons (Oxtrþ and Glp1rþ ) inhibited food
intake after optogenetic (ChR2) and chemogenetic (hM3D)
activation; however, these findings do not rule out the role of
chemosensing on feeding control. Mechanosensing signal-
ing triggered by Oxtrþ -expressing vagal neurons activated
tyrosine hydroxylase (Th)-expressing neurons in the NTS,
calcitonin (Calca)-expressing neurons localized in the exter-
nal lateral parabrachial nucleus (PBNel), and another neuro-
nal population in the dorsal lateral parabrachial nucleus
(PBNdl) (9). In addition, signaling by mechanosensing vagal
afferents to the hindbrain through the nodose ganglion also
led to the identification of neurons in the PBN that express

prodynorphin (PBNPdyn) that are responsive to liquid and
solid food consumption (10). Two-photon calcium imaging
demonstrated rapid and reversible activation of PBNPdyn

neurons upon gastric distension with an appetite-suppress-
ing effect after chemogenetic activation of PBNPdyn neurons,
suggesting that these neurons might be components of a
rapid anorexigenic feedback response to avoid overcon-
sumption. Interestingly, the synaptic inputs shown by trac-
ing experiments demonstrated connections between NTS
regions that receive oral and oropharyngeal sensory infor-
mation and, consistently, the PBNPdyn neurons were rap-
idly activated by tongue and esophagus sensation from a
gavage needle (10). The cocaine- and amphetamine-regu-
lated transcript (CART), which is co-released with pro-opio-
melanocortin (POMC) in neurons in the arcuate nucleus
(ARC) of the hypothalamus, also plays a role in the gut-brain
axis (11). The NG, in particular the right NG, expresses CART
peptide and its release into the NTS is necessary to inhibit
food intake (11).

Gut-innervating sensory vagal afferents have also been
implicated as having roles in the transmission of reward sig-
nals to the brain. Han et al. (12) have shown that the selective
activation of the right NG, but not the left NG, produced
reward-like behaviors. Because the right NG neurons do not
project directly to the substantia nigra (SNc), which in turn
release dopamine onto dorsal striatum (DS) neurons produc-
ing behavioral reinforcement, the authors found that the
increased dopamine release in the DS after optogenetic acti-
vation of the right NG is mediated by the circuit NTS-PBNdl-
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Figure 1. Vagal afferent neurons. The gastrointestinal
tract is densely innervated by the vagus nerve and its
mucosal endings acts as chemosensory terminals
detecting nutrients and hormones, whereas the IGLEs
are anatomically concentrated in muscle layers and
detect gastrointestinal stretch. The cell bodies of the
afferent fibers are located in the nodose ganglia and
the signals from their terminals are relayed to the NTS.
The PBN, in turn, receives ascending inputs from the
NTS and coordinates meal termination. IGLEs, intragan-
glionic laminar endings; NTS, nucleus tractus solitarius;
PBN, parabrachial nucleus.
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SNc (12). Interestingly, another work has recently shown that
vagal sensory neurons are responsive to intestinal sugar and
are implicated in the development of preference for sugar.
The activation of vagal sensory neurons by sugar is dependent
on the sodium-glucose-linked transporter-1 (SGTL1) expressed
in enterocytes and endocrine cells in the gut, as its pharmaco-
logical inhibition abrogated the vagal activation (13).

As a gateway for ascending information from the GI tract,
the NTS is at the intersection of the central nervous system
and digestive system and its activity is controlled by a number
of different neuropeptides and neuromodulators. Feeding
results in rapid activation of cholecystokinin (Cck)-expressing
neurons in NTS (NTSCCK) (14). NTSCCK circuit mapping
showed that calcitonin gene-related peptide (CGRP)-express-
ing neurons in the lateral parabrachial nucleus (LPBNCGRP)
(14) and melanocortin-4 receptor (MC4R)-expressing neurons
in the paraventricular hypothalamus (PVH) (14) are potential
downstream mediators of the anorexigenic effects of NTSCCK

activation. It was recently shown that calcitonin receptor-
expressing neurons in NTS (NTSCALCR) (15), which do not
overlap with NTSCCK, mediates nonaversive suppression of
food intake, as mice consumed more of the flavor paired with
the activation of NTSCALCR in a two-flavor preference essay.
The NTSCALCR suppress food intake via projections to a PBN
node yet to be identified but do not project to LPBNCGRP,
which mediates feeding aversion in response to GI malaise
(15). The visceral malaise is also associated with increased lev-
els of growth differentiation factor 15 (GDF15), a potent ano-
rectic factor implicated in the cancer-associated cachexia (16,
17). Recent studies have reported that the anorectic effects of
GFD15 are mediated through GDNF-family receptor-a-like
(GFRAL), which is expressed exclusively in the AP and NTS
(18–20). Further neurochemical characterization of GFRAL
expression has demonstrated that themajority of GFRAL neu-
rons are CCK-positive and the deletion of CCK in the AP and
NTS significantly reduces the anorectic effects of GFD15
(21). Interestingly, the administration of recombinant
GDF15 results in an aversive response pattern to flavored
food (22).

Because many of the identified NTS neuronal types com-
prise of key circuits for satiation, some antiobesity drugs
may influence feeding through this node. In concert, it was
recently shown that the antiobesity effects of lorcaserin
depends, at least partially, on a subset of pro-opiomelanocor-
tin (POMC) neurons in the NTS that also express the 5-hy-
droxytryptamine 2C receptor (5-HT2CR) (11). The GLP1R is
also a target for obesity treatment and GLP1R agonists, such
as the liraglutide, reduce appetite. In the NTS, a portion of
GLP1R-expressing neurons also express c-aminobutyric acid
(GABA), and the chemogenetic silencing of GABAergic neu-
rons in the NTS reduces the appetite-suppressant effect of
liraglutide (23). To analyze the endogenous effects of GLP-1
in the NTS, Cheng et al. (24) ablated the preproglucagon
(Ppg), whose selective cleavage gives rise to GLP-1, in leptin
receptor (LepR)- and Ppg-expressing neurons in the NTS.
Although the Ppg deletion in both populations did not alter
body weight and food intake, Cheng et al. (24) found that the
chemogenetic activation of LepR- and Ppg-expressing neu-
rons reduced the food intake.

In contrast to the most NTS neurons described so far that
convey satiety, tyrosine hydroxylase (Th)- and epinephrine-

expressing NTS populations (NTSTH and NTSE, respectively)
with appetite-stimulant properties were recently identified
(25, 26). The NTSTH neurons densely project to the ARC and
drives agouti-related peptide (AgRP) neural activation through
direct norepinephrine (NE) signaling; the NTSE, in turn, coex-
press the orexigenic neuropeptite Y (NPY) and its chemoge-
netic activation stimulates feeding (25, 26).

AgRP-expressing neurons in the hypothalamus potently
induce feeding when stimulated and are key neurons in the
regulation of energy balance (27, 28). For many years, AgRP
neurons were exclusively considered to function as long-
term homeostatic neurons. However, measurements of
AgRP neuron dynamics in awake, behaving mice demon-
strated that sensory cues, such as sight and smell of food,
can rapidly inhibit these neurons (29, 30). Caged food pre-
sentation induces rapid and transient AgRP neuron inhibi-
tion in fastedmice, but if the food is subsequently consumed
the inhibition is sustained, pointing to a key role for signals
from the GI tract in the rapid control of AgRP neurons.
Consistent with this, it was shown that intragastric infusion
of calorie-containing nutrients promote persistent AgRP in-
hibition (31, 32). Moreover, intragastric infusion of water or
consumption of a calorie-free gel resulted in only a small
reduction in AgRP neuron activity (31, 32). Consistent with
the known role of IGLEs, mechanoreceptors sensing GI dis-
tention, chemogenetic activation of Oxtrþ -expressing neu-
rons in IGLEs, and Glp1rþ with a lesser magnitude also
inhibited AgRP neurons (9). Also consistent with this, the
Oxtrþ IGLE is specifically expressed in the intestine and a
calorie-free volumetric load in the intestine, but not in the
stomach, sustained AgRP neuron inhibition (9).

Gut microbiota landscape is yet another factor affecting
the gut-brain axis (33). Studies with germ-free rodents
have that shown elevated levels of PYY and enterogluca-
gon (34) and the metabolites generated by enzymatic
processing of nutrients, such as the short-chain fatty acids
produced by the microbiota, can stimulate GLP1 release
from L cells, suggesting that the gut bacteria participate
in endocrine physiology (35). In addition to controlling
metabolites, the microbiota is also able to produce signal-
ing molecules with putative functions on feeding control.
The Escherichia coli, for instance, produces a caseinolytic
peptidase B protein homologue (ClpB), an aMSH-like pep-
tide, whose plasma levels are associated with increased
POMC neuronal activation (36).

NOVEL INTRA- AND EXTRAHYPOTHALAMIC
CIRCUIT NODES IN FEEDING CONTROL

The sustained feeding behavior seen after activating AgRP
neurons is quenched by sensory cues, raising the possibility
that sustained hunger is mediated by another long-lasting
neuropeptide. The AgRP neurons also release NPY and
GABA, and the contribution of each of these neuromodula-
tors to sustained hunger signal was recently assessed. AgRP
neurons were optogenetically activated in animals in which
GABA or NPY signaling was ablated by a cell-specific knock-
out for 15min and food intake was subsequently measured
(37). Mice lacking NPY presented a time-locked feeding and
less drive for food-seeking upon stimulation, establishing
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NPY as the neuromodulator responsible for the sustained
hunger and motivated behaviors produced by AgRP neuro-
nal activation (37). In addition, the activation of AgRP neu-
rons induces peripheral insulin resistance and this effect is
also NPY dependent (38).

AgRP- and POMC-expressing neurons project to the PVH,
leading to increased and decreased food intake, respectively.
Optogenetic activation of AgRP terminals in the PVH rapidly
stimulate food intake through the inhibitory and fast-acting
transmitters GABA and NPY (39). Conversely, the slow-act-
ing, PVHMC4R agonist, aMSH (cleaved from POMC) decreases
food intake but only after hours (40). Thus, it was further
hypothesized that there is another unknown fast-acting sati-
ety neuron in the ARC. A group of glutamatergic neurons
(ARCVGLUT2) was recently identified as the source of excita-
tory input onto PVH neurons, and they were shown to rap-
idly induce satiety (41). Moreover, there is plasticity of
glutamatergic transmission to PVHMC4R and this is poten-
tiated by aMSH. ChR2-assisted circuit mapping (CRACM)
demonstrated that ARCVGLUT2 neurons receive light-
evoked inhibitory postsynaptic currents (IPSCs) from
ARCAgRP neurons. Thus, ARCVGLUT2 neurons are inhibited
by GABAergic projections from ARCAgRP neurons under
fasting conditions (41).

The PVHMC4R is an important downstream effector site for
ARC neurons and a critical node for satiety signaling.
However, PVHMC4R does not account for all satiety-related
signaling of PVH neurons, as demonstrated by the compari-
son between the chemogenetic activation of single-minded-
1-expressing neurons in PVH (PVHSIM1), which is expressed
by most PVH neurons, and the chemogenetic activation of
PVHMC4R neurons on food intake. It was recently shown that
the chemogenetic activation of glucagon-like peptide 1-
expressing neurons in PVH (PVHGLP1R) acutely suppress food
intake and their silencing induced body weight gain and hy-
perphagia (42). Nevertheless, the significant overlap between
PVHMC4R and PVHGLP1R neurons rules out the possibility
that the putative PVHSIM1-positive/PVHMC4R-negative neu-
rons are this satiety-inducing population. The investigation
of a prodynorphin-expressing neuron in PVH (PVHPDYN),

which does not overlap with PVHMC4R, led to the identifica-
tion of this putative PVHSIM1-positive appetite-suppressing
population, as their silencing also triggered obesity and hy-
perphagia (43). Anterograde viral tracing demonstrated that
PVHPDYN project to the central compartment of the lateral
parabrachial nucleus (cLPBN) and prelocus coeruleus (pLC),
but PVHPDYN make glutamatergic synapses onto neurons in
the pLC but not the cLPBN. Finally, the authors found that
PVHPDYN neurons receive GABAergic input from ARCAgRP

neurons, as demonstrated by light-evoked IPSCs (43).
In contrast to the short-term and gut-derived signals to

the brain, leptin secretion by adipose tissue acts as long-
term afferent signal to modulate food intake and body
weight by controlling the activity of ARC, and other, neurons
(44). Previous reports have indicated that leptin receptor-
expressing (LepR) ARCPOMC neurons are important for feed-
ing and body weight regulation. However, LepR deletion in
ARCPOMC of adult mice does not affect body weight and food
intake (45). Rather, leptin signaling in ARCPOMC is required
for the regulation of glucose homeostasis independent of its
effect on energy balance (45). A recent work demonstrated
that CRISPR-mediated deletion of LepR in ARCAgRP induced
severe obesity, diabetes, and food intake, suggesting that lep-
tin largely suppresses appetite by targeting ARCAgRP and not
ARCPOMC neurons (46). This work has now been challenged
by a recent finding showing that the antiobesity effects of
leptin are mediated by GABA-positive neurons in the ARC
and its chronic activation induces massive obesity (47). The
authors also observed that leptin administration in ARCAgRP

-ablated ob/ob mice is sufficient to normalize the body
weight. Interestingly, the chronic chemogenetic activation
of ARCAgRP neurons increases feeding initially and induces
significant weight gain, however the food intake and body
weight return to baseline after 7 and 60days, respectively
(48). Taken together, the aforementioned studies highlight
the complexity of hypothalamic circuits involved in the
energy homeostasis.

Whereas increased leptin levels inhibit the food intake, a
fall in leptin levels disinhibits ARC neurons and stimulate
appetite. This hormonal programming to conserve fuel

Satiety

PVH

PBN

ARC

PNOC

PNOC- / AgRP- / GABA+

neurons?

LEPTIN

POMC

3V
AgRP

GABA

MC4R

PDYN GLP1R

Figure 2. Novel ARC and PVH neurons. PNOC-
expressing neurons are activated by short-term HFD
feeding and, in concert with AgRP neurons, inhibit
POMC neurons through GABAergic projections.
Recent studies suggest a distinct GABAergic neuronal
population as the primary effector of leptin signaling in
the ARC. The ARC neurons project to and target PVH
neurons to control feeding. GLP1R, MC4R, and PDYN
are expressed in different neurons in PVH and their
activation induce satiety through different efferent cir-
cuitry in PBN. AgRP, agouti-related peptide; ARC, arcu-
ate nucleus; GABA, gamma-aminobutyric acid; GLP1R,
glucagon-like peptide-1 receptor; MC4R, melanocortin-
4 receptor; PBN, parabrachial nucleus; PDYN, prody-
norphin; PNOC, prepronociceptin; POMC, pro-opiome-
lanocortin; PVH, paraventricular nucleus; 3V, third
ventricle.
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stores was recently extended by a recent work demonstrating
that food-restricted mice display increased serum concentra-
tion of growth-hormone (GH) and the activation of its recep-
tor (GHR) in ARCAgRP induces metabolic responses consistent
with energy conservation, such as reduction in energy ex-
penditure and increased food intake (49).

Another novel GABAergic neuronal population regulat-
ing food intake was recently identified in the ARC.
Prepronociceptin-expressing neurons (ARCPNOC) are distinct
from ARCAgRP and ARCPOMC and are glucose-excited (50).
ARCPNOC project locally to the ARC and further assessment
of its innervations identified an inhibitory connectivity onto
ARCPOMC neurons. The optogenetic activation of ARCPNOC

neurons promotes feeding but does not trigger acute effects
on glucose homeostasis or insulin sensitivity. Interestingly,
the Pnoc gene was one of the most enriched transcripts in
the hypothalamus in mice fed an acute high-fat diet (HFD),
indicating that PNOC-expressing neurons may have a role in
the overconsumption of mice fed a HFD (Fig. 2) (50). A
recent report demonstrated that ARCAgRP neurons receive
input from a separate population of nociceptin-expressing
neurons in the anterior bed nuclei of the stria terminalis
(aBNST) (51). Moreover, the ablation of nociceptin-express-
ing neurons in aBNST increased body weight and food
intake, suggesting a putative role of these neurons in energy
homeostasis by controlling ARCAgRP neurons activity (51).
PNOC-expressing neurons are also distributed in other extra-
hypothalamic areas, such as lateral septum (LS) and central
amygdala (CeA). The latter is recognized as an important
integrative brain region and it receives excitatory glutama-
tergic inputs from PBNCGRP neurons, and it is also activated
by CCK. PNOC-expressing neurons in CeA (CeAPNOC) were
recently identified as a novel population (52). Consumption
of HFD acutely activated CeAPNOC neurons, and mice with
prior chemogenetic inhibition of CeAPNOC neurons reduced
their HFD consumption on first exposure. The optogenetic
activation of CeAPNOC terminals in the ventral BNST, PBN,
and NTS induced a reward-like behavior (52).

The development of tissue-clearing techniques (e.g.,
iDISCO-based methods) combined with Fos staining in the
whole brain have provided further progress in the field by
allowing the comparison of neuronal activation in different
contexts and the identification of unappreciated brain
regions involved in controlling energy homeostasis. In this
regard, a study identified two molecularly and anatomically
distinct neuronal populations in the dorsal raphe nucleus
(DRN): a vesicular GABA transporter (DRNVGAT) and a vesic-
ular glutamate transporter type 3 (DRNVGLUT3) (53). It was
shown that fasting increased Fos-positive activation of
DRNVGAT population. Optogenetic activation of DRNVGAT

population increased food intake and inhibition decreased
food intake. The DRNVGLUT3 were activated by refeeding and
they inhibited food intake when activated whereas photoin-
hibition of DRNVGLUT3 increased food intake. Chronic che-
mogenetic inhibition of DRNVGAT neurons in leptin-
deficient ob/ob mice led to a significant reduction in body
weight (53). Further investigation of DRNVGAT neurons in
controlling energy homeostasis also identified a key regula-
tory role in thermogenesis, as their activation suppresses
energy expenditure through reduction of interescapular
brown adipose tissue (iBAT) temperature (54). Using iBAT

retrograde viral tracing, the authors found that DRNVGAT

neurons send descending projections to raphe pallidus
(RPa), which in turn innervates iBAT (54).

CONCLUDING REMARKS

Interoceptive neurons process internal-state information
to control appetite. Although most of the experimental
approaches in neuroscience have been useful to probe neural
mechanisms and circuits, the extent to which artificial acti-
vation/inhibition of neurons recapitulate their function
under physiological circumstances is still unclear. The inte-
gration of sensory cues and caloric value of food is a perma-
nent task for neurons and how these pathways are disturbed
by obesity-predisposing factors, such as the consumption of
HFD, is an ongoing debate (55–57). There is also a complex
CNS network that controls iBAT thermogenesis and white
adipose tissue (WAT) metabolism by controlling autonomic
outflow. Similarly, peripheral insulin sensitivity and glucose
metabolism are also potently, but not exclusively, governed
by CNS. Finally, there is an emergent need to comprehend
how the brain deciphers palatable food and drive reinforcing
effects, intermingling hedonic and homeostatic feeding (58).
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